添加微信好友, 获取更多信息
复制微信号
1收益稳定:
本次发行的金融产品预期年化收益高达8%+。
品亮点
2、风险可控:本项目担保方为成都都江堰投资发展集团有限公司,总资产规模近1000亿元,主体信用评级AA+,偿债能力强。
足额应收账款质押:发行方提供对都江堰市国投城市建设有限公司价值5.5亿元应收账款作质押担保。
都江堰新城建投都江堰2023年债权资产转让(三)政府债定融
政信知识:
桩基础,桩布置形式 在冶金工程中,烟囱属于土建特种结构,一定程度上控制工程的建设进度,在设计和施工方面都具有特殊性而烟囱基础是整个烟囱设计中主要的组成部分
由于烟囱属于长柔悬臂结构,在风荷载、地震荷载及烟囱筒身的附加弯矩作用下,作用于烟囱底部的弯矩值是相当大的,往往数倍于烟囱底部的竖向力
因此,烟囱基础力计算主要由偏心荷载作用控制
高大构筑物的基础若产生很小的转动,将会引起严重的后果,为此,基础设计不容忽视,在烟囱的基础设计中,常见的基础形式有刚性基础、钢筋混凝土板式基础和钢筋混凝土壳体基础等
当浅层地基土质不良,采用浅基础不能满足承载力强度和地基变形要求时,则可以采用桩基础
1选型 烟囱桩基础的承台平面一般为圆形或环形,桩的平面布置应以承台平面中心点为圆心,呈放射状布置
但承台平面究竟选用圆形还是环形.需根据具体情况选择相应形式
2桩基础的受力分析 在一般情况下,地基应包括的计算内容为:① 基础底面压力,包括轴心荷载作用下的基础底面压力和偏心荷载作用下的基础底面压力;②变形验算,包括基础最终沉降量和基础倾斜值
由于烟囱的特殊结构形式,烟囱基础底面压力计算主要由偏心荷载作用控制
偏心荷载作用下基桩的竖向力计算公式如下: 式中—偏心荷载作用下的基桩的最大竖向力设计值; — 作用于桩基承台顶面的竖向力设计值; — 桩基承台和承台上土自重设计值; — 作用于桩基承台底面通过群桩形心轴的弯矩设计值; — 桩基承台底面群桩对形心轴的抵抗矩; — 桩基中的桩数
根据上式可以发现,抵抗矩对于的大小起关键作用
越大,就越小,尤其较大时更为明显
论文发表
因此,在烟囱桩基础设计当中,如何合理布置桩位,充分发挥桩基础的作用,便成为桩基础设计的关键
烟囱桩基础设计中,桩的平面布置一般是以烟囱中心点为圆心呈m道圆环状布置,所以W的计算公式如下: 式中— 由里往外数第i道圆环上桩的个数; —由里往外数第i道圆环的半径; —圆环的总道数
论文发表
从上式中可以看出,在m和总桩数确定的情况下,外侧圆环半径越大,其上的桩越多,则越大;相反,越小
并且,对于的贡献效率,离圆心近的内环上的桩,要明显低于离圆心远的外环上的桩,圆心上的桩对于W的贡献效率为零
也就是说,离圆心较近的桩,主要对提供竖向承载力方面作出贡献,而对抵抗弯矩方面贡献不大
根据上述特点,在设计桩基础时,桩要尽量远离烟囱的圆心,应优先考虑将桩基础布置成环形
环形桩基础不仅经济合理,而且可减小承台本身及其上覆土的自重,同时由于避开了基础中部的高温区,可减小基础的温度应力
3桩基础的布置 当桩基础单桩承载力较大时,进行竖向轴心荷载和偏心荷载的桩基计算时,较少的桩即可满足,使得桩基础布置成环状成为可能,此时,桩基础应优先布置成环状
因为环形桩基础的整体几何特性与受力特性相一致,能充分发挥单桩承载力高的优势;当桩基础单桩承载力不是很高时,即使轴心受压计算也需要相当多的桩,按环状布置根本摆放不下,桩基础及基础承台只能按圆形摆放
此时,由于桩基础中桩的数量往往由偏心受压计算决定,桩的数量较多,导致靠近烟囱中心部位的桩无法充分发挥全部承载力
同时,圆形桩基础承台尺寸很大,导致承台混凝土量相对环形承台增加很多
且按圆板模型受力计算时,由于圆板半径很大,导致配筋量很大
综合而言,桩基础及基础承台按圆形摆放势必要造成经济上的很大浪费
在这种情况下,如无地质条件、技术条件等限制,建议加大桩的直径或增加桩的长度,以提高单桩承载力,按环状形式布置桩基础和桩基承台,往往能降低许多成本,取得良好的经济效益
4结语 在烟囱桩基础设计中,常采用的桩的形式为钢筋混凝土灌注桩和预制桩
灌注桩主要采用沉管灌注桩和钻孔灌注桩,预制桩主要采用混凝土方桩和预应力混凝土薄壁管桩
在选取烟囱基础桩的形式时,应与整个工程项目全盘考虑.并应尽量采用统一形式的桩,以便于桩的制作和施工
烟囱桩基础的布置和构造应符合《建筑桩基技术规范》JGJ94—94和《建筑地基基础设计规范》GB50007 2002中的相应要求
环形桩基础布置桩时需注意: 1)桩布置的环数不宜过多,否则会造成基础承台尺寸过大,增加钢筋用量
但环数也不宜少于两道,当环数少于两道时,桩群的整体性较差
一般来说,桩的截面尺寸较小时,布置2~4道环为宜;桩的截面尺寸较大时,布置成2~3道环为宜
由于桩的环数主要根据总桩数和桩的截面尺寸来确定,所以在设计时,设计人员可通过调整单桩承载力和桩的截面尺寸及桩的形式,来调整桩的环数,以达到较为合理的布置形式
2)桩的平面布置应以烟囱的形心为圆心,对称地分布在烟囱环状竖壁的两侧,并应遵守内疏外密的原则
论文发表
3)桩间距不可过小,需满足桩基规范中桩的最小中心距的要求
桩间距也不可过大,应控制在6倍桩径的范围内,以便满足群桩的整体性要求
4)各道环上的桩数宜以4的倍数或偶数为佳,这样桩排布时易于均布整齐
在进行承台设计时,桩基础承台应具有较大的刚度,以保证群桩的协调工作
承台的平面尺寸及厚度可参照环板和圆板基础的尺寸要求
桩顶嵌人承台内的长度不应小于50mm,桩身主筋伸人承台锚固长度不应小于30d(d为主筋直径),对于抗拔桩基不应小于40d
烟囱桩基础承台应进行抗冲切和抗弯计算,可采用简化计算方法,按一般的环形或圆形基础求出承台底平面的地基反力,再参照板式基础的计算方法进行抗冲切和抗弯计算
参考文献: 【1】 JGJ 94—94,建筑桩基技术规范【s】. 【2】 GB 50007—2002,建筑地基基础设计规范【s】. 【3】 牛春良,主编,烟囱工程手册.中国计划出版社. 讨论该结构的设计方法
结合住宅工程实例
对框架剪力墙结构的受力特点、布置原则、抗震措施作了详细介绍
【关键词】高层住宅;框架;剪力墙;设计方法 近年来,人们生活水平不断提高,对居住环境的要求越来越高,高层住宅以其节省用地、使用合理等优点,越来越受到人们的青睐,本文就结合高层项目就框架剪力墙的设计进行总结归纳
一、结构特点介绍 我们知道框架是由梁柱线性杆件组成的,框架的受力特点类似竖向悬臂剪切梁,其变形曲线为剪切形,在纯框架的结构中,所有框架的变形曲线都是类似的,所以,水平力按各框架的抗推刚度D比例分配,剪力墙是竖向悬臂弯曲结构,其变形曲线为弯曲形,在平面内有很大的抗弯曲刚度,在一般剪力墙结构中,所有抗侧力构件剪力墙的侧移曲线都是类似的,水平力在各片剪力墙之间按其等效刚度EI比例分配
在同一结构单元中,二者是通过水平面内刚度无限大的楼板连接在一起的,以至于它们不能单独按各自的弯曲变形或剪切变形而自由变形,它们在同一楼层的位移必须相等,在不考虑扭转的情况下,由于框架与剪力墙共同工作,彼此相互作用,这样,在框架-剪力墙结构上部,剪力墙被框架向后拉,在框架-剪力墙结构下部,剪力墙被框架向前推,而框架的受力情况正好与此相反,沿竖向剪力墙与框架之间水平力的分配不是一个定值,它随着楼层的改变而改变,水平力在框架与剪力墙之间既不按等效刚度EI分配,也不能按抗推刚度D分配,框架-剪力墙结构中,顶部剪力不为零,这是因为顶部剪力墙共同工作,相互之间必然产生荷载;框架的最大剪力值在结构中部,框架底部剪力为零,全部剪力均由剪力墙承担
二、框架-剪力墙结构中剪力墙的布置 剪力墙的布置一般原则要求剪力墙片数不要太少,而且每片剪力墙刚度不要太大,连续尺寸不要太长,使抗侧力构件数量多一些,分散一些,每片剪力墙的弯曲刚度适中,在使用中不会因为个别墙的局部破坏而影响整体的抗侧力性能,也不会使个别墙的受力太集中,负担过重而引起过早的破坏,刚度过大的墙承担的内力也大,相应的基础处理难度增加,同时也考虑到剪力墙相距太远,楼面刚度要求大,很难满足要求,周边的原则是考虑建筑物抵抗扭转能力,便于保证刚度中心与平面中心相吻合
剪力墙布置在周边对称位置,增加抵抗扭转的内力臂,在不增加剪力墙面积的情况下,提高抗扭转能力,剪力墙布置的位置应设在平面形状变化处,即:角隅、端角、凹角,这些部位往往是应力集中处,设置剪力墙给予加强是很有必要的;高层建筑的楼梯间、电梯间、管道井处等的楼面开洞严重地削弱楼板刚度,对保证框架与剪力墙协同工作极为不利
剪力墙的间距:现浇钢筋混凝土楼盖L/B=2~4为宜;装配整体式钢筋混凝土楼盖L/B=1~2.5为宜,原则是建筑物愈高、抗震设防烈度愈高,间距取值愈小,剪力墙应沿建筑物全高设置,不得沿高度有突变,剪力墙应落地,剪力墙并应在两个主轴方向组合部署成L形、T形或形成封闭的筒,这样可以提高剪力墙自身的刚度,且一片剪力墙的长度不宜大于8m,当超过时,应利用洞口分割成两片墙,功能上不需要洞时,洞口可用不同的材料或轻质材料填充,过长的剪力墙中央部分的钢筋尚未到达屈服阶段,墙端部的钢筋早因变形过大而断开破坏、工程具体情况、建筑物高度、地区设防烈度及参考上面方法取值
三、框架-剪力墙结构方案的确定 1、框架-剪力墙结构方案选型 对于有抗震设防的框架-剪力墙结构,正确而合理的设计方案其首要任务必须满足抗震设防的要求,在场地地基、建筑体型、结构体系的质量、刚度分布、构件强度、延性等方面要慎重考虑
2、框架-剪力墙结构设计 框架-剪力墙结构具有较好的延性和耗能能力,是一种较为理想的抗震结构型式,对于框架-剪力墙结构,合理设计框架、剪力墙以及连梁,对框架剪力墙结构抗震能力是非常重要的,钢筋混凝土高层建筑结构设计与施工规程考虑了框架-剪力墙结构中剪力墙开裂后刚度降低,使框架承受的水平荷载大于弹性分析结果,则规定框架承受水平剪力不小于0.2V01,框架-剪力墙结构进入弹塑性阶段后,剪力墙上部弯矩增大,下部弯矩减小,反弯点位置下移,剪力墙担负的剪力上、下部变化较大,中部变化较小,但是剪力墙设计控制内力变化不大,框架-剪力墙结构屈服以后,结构的刚度特征值λ将改变,框架的最大剪力层转移,如果屈服顺序依次为剪力墙→框架梁→框架柱,则λ值增大,框架的最大剪力层下移;如果是框架梁先屈服,则λ值降低,最大剪力层上移,框架-剪力墙结构抗震设计中,应尽可能设置抵抗地震的多道防线,一般情况下,剪力墙作为第一道防线首先屈服,将框架设计作为第二道防线
因此,要充分认识到框架在剪力墙屈服后增加的荷载效应,让框架柱承担竖向荷载的构件有充分的安全储备,并且针对第二道防线,框架结构作抗震验算,总之,适当处理构件的强弱关系,使其形成多道抗震防线,是增强结构抗倒塌能力的重要措施
四、合理分析计算结果 1、合理分析,正确简化计算程序要求的计算,如TBSA程序对剪力墙按薄壁柱考虑的分析是有条件的,即剪力墙的总高度比截面最大尺寸要大得多,洞口上下基本对齐,上下层剪力墙截面不要突变,每片剪力墙不得多于19个墙段,实际工程中如果不符合这个要求,将影响计算结果的正确性1对于屋顶上部设置扩播电视电信的钢塔,用TBSA程序计算时,首先将钢塔转换成为等刚度、等质量的薄壁筒体与下面结构整体计算,然后,再按得到的内力另外进行钢塔的设计,框架-剪力墙结构中,剪力墙不落地时,形成框肢剪力墙结构,用TBSA程序分析,先将计算洞口划分为平面剪力墙或较简单的L形和I形剪力墙,转换层设托梁支承,用无柱连接点与上层剪力墙连接,当每片墙的支承柱数为3根或更多时,转换梁的刚度要取得很大的高度,这种简化便于整体分析,但转换层和上下相邻层的内力和配筋运用另外的计算程序进行设计
2、分析计算机输出结果是否正确,首先从周期、振型和地震力方面判断,非耦连计算地震作用,其第一周期会在常规范围内,框架-剪力墙结构T1=(0.08~0.12)NS(NS为层数);第二周期T2=T1(1/5~1/3);第三周期约为T3=T1(1/7~1/5),如果相差太远应考虑调整结构截面尺寸和剪力墙的数量,使周期处于常规的范围内,正确的计算结果振型曲线多为连续光滑的,且第一振型没有零点,第二振型的零点在(0.7~0.8)H高度上,第三振型的零点分别在(0.4~0.5)H和(0.8~0.9)H高度上,如果计算结果有异样,应继续分析查找原因,正常情况,底部总剪力也应在合理范围内,7度Ⅱ类场地底部剪力大约在总重量的1.5%~3%之间,8度Ⅱ类场地大约在总重量的3%~6%之间视为正常
框架-剪力墙结构的位移在一般情况下,弯曲型与剪切型之间基本上是反S型,接近于直接参考点的位移曲线,应上下渐变,不应出现大的突变,楼面水平位移保持直线状态,在同一结构,同一荷载下内力是平衡的(地震作用时,由于经过振型组合视为非同一荷载)内力平衡必须考虑全部内力,如节点力矩平衡,要考虑平面内、外的全部弯矩、扭矩,必须考虑单工况的内力,不考虑分项系数,否则内力是不平衡的,如果按这些要求,其内力不平衡时,应怀疑计算结果的正确性,继续分析找出原因
以上是对高层住宅结构设计采用钢筋混凝土框架-剪力墙结构的几个问题,简要阐明此结构体系的受力特征,该结构中剪力墙的布置原则以及设计中确定框架-剪力墙结构方案时,值得重视的一些问题,需在日常工作中加以重视,从而确保建筑物质量可靠