本文作者:linbin123456

重庆綦发城市建设发展债权资产002

linbin123456 2023-09-23 124
重庆綦发城市建设发展债权资产002摘要: ??重庆市2023年首发➕独家稀缺一年期季度付息➕主城一小时经济圈➕担保方为AA发债主体投资产品劲爆来袭????【产品名称】重庆綦发城市建设发展债权资产002?【002募集规模】5...
微信号:18321177950
添加微信好友, 获取更多信息
复制微信号
??重庆市2023年首发➕独家稀缺一年期季度付息➕主城一小时经济圈➕担保方为AA发债主体投资产品劲爆来袭??
??【产品名称】重庆綦发城市建设发展债权资产002
?【002募集规模】5000万
?【产品期限】12个月

无关内容:

探讨了实践问题,并制定了科学有效的应对策略

    对延长道路桥梁工程服务应用寿命,优化路面平整度、美观性,创设显著效益,有重要的实践意义

      关键词:道路桥梁 工程路面 平整    1 道路桥梁工程路面平整问题    道路桥梁工程路面施工建设包括水泥路面以及沥青路面等

    水泥路面倘若施工应用水泥材料没有达到良好的强度标准,处理土基强度存在不匀称性,便会导致摊铺水泥路面方位形成断裂问题

    再者,倘若施工团队在秋季以及春季季节进行施工作业,便会由于昼夜时段的较大温差,令水泥混凝土路面形成板体断裂问题,较易受到应力的不良影响

    一旦重要水泥混凝土路面形成断裂,道路桥梁工程平整性便会显著下降

    道桥工程建设进程中,经常由于土基的强大以及不均匀、环境温差较大作用,导致显著的翘曲应力,并令板体形成不良断裂问题

    道路桥梁水泥混凝土路面的完好优质直接影响路面平整性与应用优质性

    为此,做好防护管理十分必要

    道桥工程施工阶段中,做好质量管控、严格进行把关可防患于未然,良好的实现效益目标

    沥青投入应用前期,倘若已经引发裂缝问题,则完成施工并通车后,将导致大面积道路破损,并影响工程路面平整性

    道路桥梁工程舒适平整为衡量工程建设水平的核心指标

    如果无法对沥青材料应用合理管控,投入应用了不优质、不合格的材料产品,便会令路面平整性进一步快速的衰减,影响工程应用寿命

    当前,一些道路桥梁项目工程还存在过分的看重路面平整性,而对路面沥青材料的压实度不科学掌控的问题

    加之应用碾压处理的材料没有实施有效的配比处理,令沥青材料无法符合标准,导致路面基地承载水平不足

    加之持久长期的自然环境、客观条件作用影响

    基于施工单位自身处理操作环节中,没有注重道路桥梁路面的良好平整性,也会导致路面不良开裂、引发凹凸不平现象,并且出现该类问题通常在早期,进而令路面平整性长期包含安全隐患

    工程投入应用阶段中,则会令路面平整性的破损进一步加剧,整条道路桥梁路面的服务应用价值则深受影响

    一旦路面呈现出平整性问题,还会对行车安全、舒适性形成不良影响,令通行速度全面下降,并会直接危及工程安全可靠性

    对于车辆保养、动力性能则会形成负面作用,导致其磨损问题更为显著

    软土地基的不良沉陷为当前较多道路桥梁工程施工建设呈现的显著问题,同时也为需要迫切应对的矛盾

    由于软土地质含有较多水分,同时承载性能有限,进而令道路桥梁工程内地基的应用与效能包含显著风险问题,较易引发路基的不良压缩沉降,并形成滑脱问题,还会导致大面积的道路坍塌,对路面平整性形成负面影响,导致路面无法正常应用

        2 应对道路桥梁工程路面平整问题科学策略    2.1 强化路基坚实性    路基为整体路面施工建设核心基础,道路桥梁工程建设施工阶段中,基于路基整体强度与稳定性、安全可靠性目标而明确严格细化的质量要求

    一旦路基填筑处理不契合相关设计要求时,则路面平整性无法科学实现,平整度指示同样会持续下降

    为此,做好路基坚实度处理尤为重要

    应对施工建设区域路段实施细致严格的分析研究,技术员工应在工程现场对图纸性质、四周环境进行勘测明确,进而依据精准核查结论评判施工具体要求

    并全面就要求标准设计合理科学的工程建设方案

    还应做好路基排水处理系统的有效组织安排,进行四周边坡防护的科学处置,优选合理工程设施

    进而可最大化的确保路基整体的可靠强度与稳定水平

    还应依据规定标准做好路基密实性管控,关键在于应做好桥涵以及通道台背基础的有效填筑

        2.2 预防路面不良开裂    路面开裂为影响道路桥梁工程平整性的首要因素

    为此施工建设阶段中应全面预防,由源头入手确保路基、基层的优质完好

    应用混凝土材料应通过国家认证

    特别是水泥材料,应选择低碱性类别

    基于混凝土受到过振影响会导致路面的不良崩离,进而导致板块裂缝问题

    为此混凝土振捣处理阶段中,对密实性不足的路面,应利用碾压干硬属性的混凝土材料,预防导致路面的不良开裂问题

    再者,伸缩缝处理预留阶段中,应依据工程设计标准、操作规程科学实施

        2.3 提升基层摊铺处理平整性    道路桥梁施工环节中,摊铺设施熨平装置牵引点,会伴随履带运动持续的上下浮动

    为此平整性会受到一定影响

    路面应用填筑处理材料环节,松厚度也包含一定差别性

    一旦路桥工程基层高差显著,形成剧烈的波动变形,均会令路面平整性不良下降

    为提升基层处理铺设优质平整性,思想上应给予高度重视,应对路基顶部标高细化分析了解,科学管控道路桥梁厚度与平整性

    另外,应完善分层摊铺处理,施工阶段之前,应做好工程平整性科学研究,倘若处理到交叉的平整性路面,则应合理应用分层摊铺处置手段

    应用摊铺设施,应尽量利用捣固频率水平显著的设施

重庆綦发城市建设发展债权资产002

    各类构件则应快速的清扫处理,扫除混凝土以及砂浆残料干扰物质

        2.4 科学实施摊铺有序处理,完善碾压施工    摊铺为道桥工程项目路面平整处理施工的核心关键,应制定优质的摊铺处理流程

    施工前期应进行数据信息的整体全面研究,将其视为捣固处理、摊铺效率的明确参考标准

    各个摊铺设施开启环节,均会预留相应距离,倘若该距离形成施工缝不做好科学处置,排水系统会遭受负面影响

    为此,应做好接头处置,最大化减少设施停留时间

    另外不应忽视摊铺设施的管控监督工作,对于施工路段各类杂物应全面清除,预防对其质量以及效率形成不良作用,导致平整度下降

    摊铺设施运行阶段中,应设置警示标志,中断车辆出行,并应做好感应梁板的科学清扫

    对于倒料以及收料散落的物质,应快速的清除

        道路桥梁工程施工碾压处理环节,可确保路面良好平整性

    为此,应履行有效合理的碾压处理工序,科学操控压路机设施

    施工处理阶段中应适宜的把握好碾压处理的力度,应遵循先重逐步减轻而后再加重的处置原则

    初始碾压阶段中,车轮应优选钢轮以及胶轮

    进行重复碾压环节中,则应合理的应用振动轮

    整体碾压处理工序阶段中,进行重复碾压,即复压环节尤为重要

    应选择胶轮压路设施,确保工程效果持续良好

    进行首轮碾压环节,应尽可能的控制减少刹车频率与次数,预防刹车轮对道路桥梁平整形成不良作用,整体的碾压路线应由低到高,实施合理的错轮碾压处理

        3 结语    总之,为提升道路桥梁工程路面平整性,   【1】 盛志湘.基于城市道路桥梁工程施工质量通病分析及相关预防措施探讨【J】.城市建设,2010(9):236,238.    【2】 刘冬.影响沥青路面平整度的因素及处理措施分析【J】.科技资讯,2011(17):93. 主楼地下1层(层高4.45m) ,地上16层(总高59.1m),裙房3层,框剪结构,柱下承台基础

    桩采用450mm×450mm的空心预制桩,桩身混凝土C30,桩端进入⑥-2层(砂砾石混粘性土)持力层500mm,要求单桩承载力标准值800kN

    由于在桩基的施工过程中,桩沉至③-1层(砂砾石混粘性土,厚度0.5~3.4m )时出现不能穿透到达原设计的⑥-2层,故工程建设单位邀请国内另一家建筑设计研究院的有关专家在对地质资料分析基础上,提出工程桩基的修改和处理办法:桩持力层为③-1层(砂砾石混粘性土),主楼基础改为桩筏基础(桩距1800mm×1800mm),要求单桩承载力标准值600kN (后经静载试验已达到要求)

          建设单位考虑到基础与上部结构要统一及便于现场施工服务,决定由本院统一进行设计计算,绘制施工图

    根据原上部结构布置与另一家建筑设计院提供的桩位图,经本院的计算分析 ,结果是:持力层下卧层(⑤层淤泥质粘土)的强度仍然不够

          2、工程地质及场地      地基土分布及工程特征为:场地地形平坦,地貌类型属河海相冲积-淤积平原

    根据勘察揭露情况,将地基土划分为:      ①层表部粘土:全场分布,直接出露地表,厚0.90~1.10m

     饱和,软~可塑状,高中压缩性

    上部0.3m为耕植土

    属地表氧化壳,分布稳定,具有一 定力学强度,但厚度小,经回填严实处理后可作为一般低层建筑物的天然浅基础支承持力层,其fk=70kPa,Es=3.5MPa,qs=13.0kPa

          ②-1层淤泥:全场分布,厚22.00~22.10,饱和,流塑状,高压缩性,高灵敏度,其 fk=40kPa,Es=1.00MPa,qs=5.0kPa;②-2层淤泥质粘土:全场分布,厚4.70~5.80m ,流~软塑状,高压缩性,局部为软粘土,其fk=70kPa,Es=3.00MPa,qs=10.0kPa

    该两土层为低抗剪强度软弱土层,力学强度很差,是受荷后的主要压缩层,仅可作为桩周摩擦层使用

         ③-1层粘性土混砂砾石:厚0.50~3.40m,饱和,稍密,低压缩性,其fk=200kPa, qs=24.0kPa,qp=1300kPa; ③-a层粉质粘土或粘性土混砂:为不良软弱夹层,呈透镜体状不稳定分布,厚0.50~1.10m

    饱和,软塑状,高压缩性

    往下渐变为粘性土混中细砂,其fk=80kPa,Es=2.7MPa, qs=140kPa,qp=500kPa;③-2 层砂砾石混粘性土:厚1.00~ 4.20m,饱和,稍密,低压缩性,其fk=250kPa,qs=35.0kPa,qp=2000kPa

    ③-1和③-2 层,两者呈渐变过渡关系,力学强度较好,但砾、卵石含量变化大,力学强度均一性差,而且有不稳定分布的③-a软弱夹层存在,大幅度降低了③层的总体力学强度,不是理想的桩尖持力层

    如果作为相对持力层,桩端承载力标准值要适当降低使用,同时须对下卧软弱层进行强度和沉降验算

          ④层粘土:厚0.8m,饱和,软塑~可塑状,高中压缩性

    不稳定分布,厚度小,力学强度一般,不宜作为桩尖持力层,其fk=100kPa,Es=3.20MPa,qs=20.0kPa,Qp=700kPa

          ⑤层淤泥质粘土:全场分布,厚3.10~4.0m,饱和,软塑性,高压缩性,底部有不稳定分布的可塑状粘土

    低抗剪强度软弱土层,力学强度较差,一般宜作为桩周摩擦层使用,其fk=75kPa,Es=2.8MPa,qs=12.0kPa,qp=400kPa

          ⑥-1层粘性土混砂砾石:厚1.80m,饱和,稍密,低压缩性,力学强度好,其fk=210kPa,qs=26 .0kPa,qp=1400kPa

    -2层砂砾石混粘性土:厚2.30~ 3.70m,饱和,稍密~中密,低压缩性,力学强度较好,其fk=250kPa,qs=35.0kPa,qp=2000kPa

    该两土层合并可作为拟建建筑物的桩尖持力层,但总厚仅2.70~3.70m,当选作桩尖持力层时要注意其厚度较小的特征

          ⑦-1层粘性土含砂砾石:厚1.1~1.4m,饱和,高压缩性,砾卵石含量较少,力学强度较差,仅作为桩周摩擦层使用,其fk=100k Pa,Es=4.0,qs=18.0kPa ,qp=800kPa;⑦-2层粘性土混砂砾石:厚0.50~1.60m, 饱和,砾卵石、砂含量较高,力学强度较好,但厚度小,分布不稳定,不宜作为桩端持力层,其fk=210kPa,qs=26.0,qp=1400kPa

          ⑧层粘土:控制厚度1.10~3.50m,未穿,控制深度40.5~44.5m,饱和,软塑状,高中压缩性,力学强度不均一,承载能力较低,为相对较弱下卧层,局部含砾砂,其fk=90kPa,Es=3.0MPa,qs=18kPa,qp=800kPa

          场内地下水主要为孔隙水,属潜水类型,受季节大气降水和人工排水等因素影响而变化,一般地下水位在自然地面下0.3~0.9m

          本场地未进行岩土波速测试,地基土上部为巨厚的高压缩性、高灵敏度淤积软土,对地震波有放大作用,其抗震性能差

    该场地为软弱场地土,建筑场地类别为Ⅳ类

    按全国地震带划分,乐清市位于东南沿海 地震带东北段,为少震、弱震区,远程地震波的波及影响是本地区的主要震害特征,基本地震烈度6度

    拟建为一类高层,其建筑抗震设计应按现行《建筑抗震设 计规范(GBJ 11-89)》有关规定进行

          3、设计理论及方法      针对以上工程条件和现状,采取了四种措施,以满足建筑物的沉降变形和下卧层强度要求

         3.1 应用沉降变形控制设计理论      先将桩一承台基础改为桩筏基础,充分发挥筏板和地基间、桩间土的承载能力

    按沉降变形控制设计的桩基础(也称减少沉降桩基础、沉降控制复合桩基或疏桩基础,国外叫Creeppile,Friction piled foundation,Piled raft foundation等)是按控制地基沉降的原则设计的桩基础,也即在设计时由基础的沉降控制值来确定桩数和桩长

    桩在基础中除承担部分荷载外主要起减少和控制沉降的作用,桩可视为减少沉降的措施,或作为减少沉降的构件来使用

    它是现代桩土相互作用理论研究的重要成果之一

    在实际工程中采用桩基础的原因主要有两个:一是因为地基承载力不够,需要采用桩将上部结构荷载传到深层土或支撑于坚硬持力层,二是因为地土将会发生较大的沉降变形,需要采用桩来减少沉降

    因此,合理和恰当的桩基础设计应根据采用桩基的目的不同而分三种不同的情况处理:所有荷载由桩承担;桩和筏板基础分担上部结构荷载,桩既承担荷载,同时也起到减少沉降变形的作用:桩用于减少或控制沉降,基础的承载力主要由基础板(梁)承担

    目前的桩基础设计理论都是建立在满足承载力的基础上,也即在桩基础设计时均按上述第一种情况处理,完全由上部结构荷载来确定桩数和桩长

    显然,对于沉降过大而采用桩基础的情况来说,这种传统的桩基础设计方法是过于保守的并且在设计目的上也不明确

    以沉降控制的基础设计方法,目前主要应用于层数小于8层的多层建筑,且多使用直径小于25cm的预制钢筋混凝士微型桩

    某10层办公楼桩筏基础按变形控制设计理论,成功地将原设计的110根650钻孔灌注桩减少到76根

    在国外,1986年,此理论已应用于11层的建筑物桩基础设计中,但尚未见桩箱(筏)基础与地基共同作用应用于超过18层的高层建筑桩箱(筏)基础的报道

    高层建筑桩筏基础按变形控制设计理论的核心是认为高层建筑桩箱(筏)基础能否正常安全工作,主要是让建筑物的实际沉降量小于允许沉降量

    对桩的承载能力没有很严格的要求,只要单桩荷载小于单桩极限承载力即可,并对24层的高层住宅作了加层的尝试,获得成功

          采用桩、筏共同作用的优点是:充分利用和发挥了桩对控制基础沉降的能力,并使筏板底地基也充分发挥承载能力,大大降低了工程造价

    本工程提出的计算公式:F+G≤γd(nPu+Afu)      式中F—作用于桩基承台顶面的竖向荷载设计值;      G—桩基承台和承台上土自重设计值;      Pu—单桩极限承载力;      γd—综合承载力系数,一般取0.5~0.6;      A—承台基础面积;      fu—基底土的极限承载力

          3.2 措施      (1)通过将桩-承台基础改为桩筏基础和运用沉降变形控制理论设计方法,使γd(nPu+Afu)项比原来的设计(所有荷载由桩承担)值增大,充分发挥单桩和地基土的极限承载力

          (2)减少F:采用减轻上部结构重量方法,将框剪结构改为框架结构,将部分砖墙改为轻质隔墙

          (3)减少G:采用增加一层地下室,减少土体自重,增大地下水浮托力的办法,减少基底的压应力

    这是本工程桩基设计中的重要一个环节,也是本文的创新点

    为安全起见,G的减少量仅取0.8倍地下室有效土体重

          经过以上(1)、(2)和(3)三项措施处理后,经验算房屋的整体沉降、局部沉降及桩端下软弱下卧层的强度均可满足要求

          (4)运用实时调控的方法和技术进行半逆作法施工,为了防止出现不均匀沉降或整体沉降量过大,本工程还采用了预留的安全措施,即后补预制桩技术,使地基、桩筏和由于计算模型、计算方法及各种参数的不确定性因素也得到解决和检验,具有实时检验和控制作用

    在建筑物的四角和对沉降控制敏感的区域,巧妙合理地预设倒锥形孔位,为将来需要时补压预制桩,预先作好考虑和准备,做到万无一失

         4、展望      本文介绍的设计方法,虽属于为了工程处理目的,但经过进一步深入研究和实践考验,相信可以推广应用

    目前该工程已进入基础开挖阶段

          但由于某些计算理论的不成熟和缺乏实际工程的实践经验,为了较详细地了解其真实受力、变形过程,与设计计算值比较,并为研究同类问题提供借鉴和经验,在施工和使用的规定时期内除了常规的检测外,有意识地设置了部分仪器和测点,进行沉降观察和压力测试

    最后的结果要等到大楼结顶和投入使用一段时期后才能得到和验证

          通过这一工程的设计和处理,虽然运用了目前先进的变形控制理论和实时调控方法,但要推广使用,仍有许多问题值得研究

    如增加一层地下室,虽可减轻一层土体重量,但对基坑开挖和支护增加了难度和费用;对18层建筑,将原框剪结构改为框架结构后,结构的抗侧刚度和侧向变形较难处理:对较高地震设防区,在地震发生时是否会引起不均匀沉降和倾斜甚至倒塌(即如何考虑地震效应);另外,如果在建筑物邻近处挖深坑,到底会产生多大的影响等等,欢迎大家共同探讨

      

重庆綦发城市建设发展债权资产002

文章版权及转载声明

作者:linbin123456本文地址:http://chenmj.com/post/60560.html发布于 2023-09-23
文章转载或复制请以超链接形式并注明出处政信标债网

阅读
分享