添加微信好友, 获取更多信息
复制微信号
优质知识分享:
xxxx南项目部是我参加工作后的第一个项目,在项目部工程部担任电气仪表专业技术人员,年初正是xxxx南项目部合成装置进行系统试车的紧张阶段,因合成装置控制连锁系统复杂,智能仪表众多,因此电气仪表专业在系统试车中的任务异常繁重,这对刚参加工作未满一年的我来说,是一个严峻的考验仪表系统回路调试及联锁调试是仪表施工中的重点,也是难点,因此,为充分理解和掌握仪表系统调试方法,我在工作之余,虚心向现场每一位师傅学习仪表安装调试方法及注意事项,并积极动手参与仪表工程施工的安装调试,取得了很好的效果,为圆满完成合成装置仪表技术工作任务打下了基础
xxxx南合成装置由合成气压缩机系统、氨气压缩机系统、氨合成压缩机系统、氨合成、冷冻站系统及氢回收系统等系统组成,各系统之间控制连锁点众多且原理复杂,这对仪表接线调试工作提出了极高的要求,整个合成装置控制系统分为西门子ITCC合成气机组监控系统、ESD氨气机组监控系统和浙大中控DCS集散控制系统,其中压缩机与透平汽轮机组监控系统在整个合成装置控制系统中占有重要的地位,因此我们在系统调试阶段,首先集中精力对ITCC及ESD3500监测系统进行调试,3500监测系统主要进行汽轮机组和压缩机组的轴振动和轴位移以及汽轮机转速的监测与控制;另外压缩机组一个特有的现象就是喘振现象,气流在压缩机中来回流动就是喘振,伴随喘振而来的是压缩机振动剧烈上升,类似哮喘病人的巨大异常响声等,如果不能有效控制,会给压缩机造成严重的损伤,喘振工况的发展非常快速,一般在1-2秒内就会发生,因而需要精确的控制算法和快速的控制算法才能实现有效的控制,喘振现象对压缩机组危害极大,严重的甚至造成重大事故,因此在仪表调试阶段,对防喘振调节回路系统的正确检测与精确控制是保证压缩机组正常开车的关键,在鲁化合成装置系统调试阶段,我和现场仪表调试人员积极与业主调试人员配合,对合成气压缩机组及透平汽轮机组的防喘振调节回路系统进行了多次试验并详细做好了试验记录;其次润滑油系统及冷凝器系统各种泵的联锁控制调试是电气仪表调试的另外一个调试重点,润滑油主辅泵、冷凝液主辅泵之间的正确联锁也是压缩机与透平汽轮机组正常运行的关键,因此,在系统调试过程中,我与施工队伍一起对设计院设计的联锁原理图进行分析,深入了解设计意图,特别是润滑油压力高低与润滑油主辅泵启停之间的联锁、冷凝液主辅泵之间的启停联锁是整个压缩机组与透平汽轮机组正常运行的关键,根据鲁化合成装置设计图纸,原润滑油泵及冷凝水泵主辅泵联锁在现场操作柱进行现场控制,为更好的对主辅泵联锁进行实时监测与控制,保证整个机组的安全运行,经与业主仪表专工协商,在仪表控制室增加联锁控制,通过半个月时间的紧张整改与调试,润滑油压控制系统系统、调速控制系统、机组联锁自保系统等均已达到开车所需条件,为鲁化合成装置的成功开车打下了坚实的基础
xxx二期DJG项目是我参加工作后的第二个项目,DJG项目仪表工程最大的特点是智能调节阀、开关阀众多,控制室开关量点数多,仪表施工空间小、工期短、工程量大,且汇流排内工艺介质大多为易燃易爆物质,对调节阀与开关阀的性能提出了更高的要求,同时对我们施工单位的调节阀清洗、试压试漏工作也提出了很高的要求,为了更好的完成多达三百多台调节阀的清洗、试压试漏工作,在调节阀安装之前,我们在预制场集中进行调节阀的清洗、试压试漏工作,由于多数调节阀为气开式调节阀,因此给调节阀的清洗脱脂带来了很多困难,经过与施工队技术员协商后决定,采用气泵供仪表气源(气源压力0.4Mpa),用HART通讯器施加20mA信号将调节阀开启,在调节阀开启状态下由清洗人员进行清洗;保证工艺管道安装队伍能够及时安装调节阀,加快了施工进度;二期工程还原车间正常开车运行时,汇流排室内温度高达40多摄氏度,极大的影响了三氯氢硅及氢气进料管线流量(热质量流量计)的测量精度,为提高物料流量测量精度,经与业主及监理协商,将热质量流量计的智能表头移位至汇流排外侧墙壁上,将传感专用电缆穿电缆保护管由热质量流量计传感器敷设连接至表头,以避开汇流排室内高温影响;二期还原车间经过一段时间的生产运行后,业主工艺人员发现汽化后的三滤氢硅气体从汽化间连接管道出来进入汇流排室内后温度降低,正常保温措施已无法满足产品正常生产,应业主研究决定三氯氢硅管道增加电伴热,电伴热温度控制方案采用欧姆龙E5CZ-R2型智能温度控制器对电伴热带进行控制,在业主每停一台炉子期间,进行相应的管线保温层的拆除及恢复、电伴热带的缠绕、分支管线防爆配电箱的安装、电缆保护管配管、温度控制器安装、尾端接线盒安装、电缆敷设接线及调试,电源取自总防爆配电箱;应业主要求,电伴热带应缠绕于管道上,由于管道温度太高,施工人员作业时严禁将身体任何部位与高温管道接触,在固定伴热带和温度探头时,采取一人用钳子等机械工具固定伴热带,另两人分别位于被伴热管道两端手递手方式用铝胶带缠绕将伴热带固定在管道上的方法
xxx三期DJG项目仪表安装工程主要实物工程量为:霍尼韦尔TPSDCS控制系统三套,模拟量点和数字量点总计7万多点;玻璃钢槽式电缆桥架一万多米,仪表控制电缆60多万米,管材6多万米,调节阀、流量计、变送器等智能仪表设备台件多达一万多件;三条生产线同时施工,土建、工艺管道、暖通、装饰、电气、仪表等专业超深度交叉施工,第一条生产线8月底土建交付安装,12月底交付业主生产,仪表施工周期非常短、任务量异常繁重
在三期152中央控制室施工中,通过查看仪表桥架布置图发现,根据设计院设计的xxx中央控制室仪表通廊桥架布置图(白图),原设计的仪表通廊桥架(最密处为三层共18趟桥架)空间太小,如按照原设计进行施工,将造成仪表桥架安装及电缆敷设由于空间太小而无法施工,并且由于通廊桥架在吊顶里面,该场所(805)为十万级洁净区域,施工完成后人员将无法进入吊顶里面,给日后各种仪表检修带来极大的困难
根据现场实际情况及与业主商量,将仪表通廊桥架改为钢平台,取消槽式桥架,通过对原设计的玻璃钢槽式桥架安装工程与变更后的仪表钢平台安装工程之间进行造价分析对比,原设计总造价为五百多万元,其中安装造价为九十多万元,变更后总造价为三百多万元,其中安装造价为两百多万元(钢结构型钢材料为乙供材);该变更不仅安装施工方便,为敷设仪表控制电缆创造条件,同时给日后的各种仪表检修带来了极大的方便;为业主节约总造价两百多万元,同时增加安装工程造价一百多万元
并提出相应的对策
关键词:沥青路面,平整度,影响因素,控制对策 随着高等级公路的迅速发展,对于路面平整度要求越来越高,良好的路面平整度不仅可以产生巨大的社会影响和经济效益,而且还可以减少由于平整度差异而引发的各种路面病害,延长公路的使用寿命
1影响沥青路面平整度的主要原因 沥青路面的施工,影响平整度因素主要有施工人员素质、路基施工质量、路面底基层及基层的施工、路面施工机械的选用及路面材料的质量
1.1基层顶面平整度较差 基层顶面平整度不好,将直接影响到沥青面层的平整度
由于沥青面层往往很薄,如果基层平整度较差,利用沥青面层找补是相当困难的
基层的平整度差,使其上的沥青薄厚不均,开放交通一段时间后,沥青面层混合料密实度变异性加大,在行车反复荷载作用下,沥青混合料进一步压密,使不平整度加大
1.2路基不均匀沉降 由于路基填料控制不严、地基处理不当或填土路基压实度不够,路基产生不均匀沉降,必将导致路面平整度的严重下降
路基是路面的基础,路基不均匀沉陷,必然会引起路面的不平整,而车辆在不平整的路面上行驶,产生较大的冲击力,进一步使不平整度加大
1.3配合比设计不理想 沥青面层混合料的配合比设计直接影响面层的各项指标
良好的基配、合理的沥青用量将保证路面的使用寿命
否则,由于配合比设计不合理,导致沥青混合料高温稳定性差、水稳定性不好,产生严重的车辙和裂缝,必将严重影响路面平整度
另外,基层配合比的设计将影响到半刚性基层的整体强度,作为面层的直接承重层,基层强度的好坏将直接关系到沥青面层的各项指标
1.4施工工艺水平低及机械设备的落后 由于施工工艺水平低而引起沥青面层不平整的情况是经常发生的,施工过程中对混合料的温度控制、接缝处理,均可对路面平整度产生较大的影响;另外机械设备没有合理的配套使用对摊铺平整度影响很大,如摊铺机结构参数不稳定、行走装置打滑、摊铺机摊铺的速度快慢不匀、机械猛烈起步和紧急制动以及供料系统速度忽快忽慢都会造成面层的不平整和波浪
因此,需要在施工中反复总结,不断提高施工水平,逐步提高施工质量
1.5碾压对平整度的影响 沥青面层铺筑后的碾压对平整度有着重要影响,选择碾压机具、碾压温度、速度、路线、次序等都关系着路面面层的平整度,主要表现在: 1.5.1压路机型号的选择上,如果采用低频率、高振幅的压路机时,会产生“跳动”夯击现象而破坏路面平整度
压路机初压吨位过重也会使刚摊铺好的路面产生推挤变形
1.5.2碾压温度的控制上,初压温度过高压路机的轮迹明显,沥青料前后推移大,不稳定;复压温度过高会引起胶轮压路机粘结沥青细料,小碎片飞溅,影响表面级配;温度过低,则不易碾压密实和平整
1.5.3碾压速度的调整上,压路机碾压速度不均匀、急刹车和突然起动、随意停置和掉头转向、在已碾压成型的路面上停置而不关闭振动装置等都会引起路面推拥;在未冷却的路面上停机会出现压陷槽
1.5.4碾压路线的行走上,碾压行进路线不当,不注意错轮碾压,每次在同一横断面处折返,会引起路面不平
1.5.5碾压次数的确定上,碾压遍数不够,即压实不足,通车后形成车辙;碾压遍数太多,由于短时间集中重复碾压,会造成已成型路面的推移,形成龟裂和波浪
1.5.6驱动轮和转向轮的前后问题上,如果是从动轮在前,由于从动轮本身无驱动力,靠后轮推动,因而混合料产生推移,倒退时在轮前留下波浪
2改善路面平整度的几个环节 2.1保证平整度应从路床开始 基层平整度直接关系到沥青面层的平整,而基层的平整度又与低基层有关,低基层平整情况与路基密不可分
因而,要从控制路基特别是路床的平整度开始,层层向上严格控制,直到面层,使用摊铺机摊铺基层,甚至低基层,可大大提高基层的平整度
虽然使用平地机结合推土机也可进行基层施工,但此方法会使铺成的混合料密实度不均匀,在摊铺稳定中粒土或粗粒土时,还会发生粗细集料离析现象,导致平整度差,故在施工中尽量避免使用该方法
2.2提供高质量的沥青混合料 在进行室内混合料配合比设计时,严格按施工技术规范要求进行反复验证,同时要重视试验段的试铺,避免因配合比设计不当在面层产生推拥、麻面、松散等病害
此外采用改性沥青是改善混合料热稳定性、增强粘结力的有效措施,也是提高路面平整度的有效方法
2.3处理好施工接缝 2.3.1横向接缝
从平整度控制的角度讲,路面施工中应尽量减少摊铺停机的现象,减少横向接缝及处理好横向接缝,可大幅度提高路面的平整度
横向接缝应尽量设置在摊铺层表面纵坡或厚度未发生变化的区域内,在已铺顶面顺路线方向用3m直尺找出纵坡开始发生变化的断面,然后沿此断面切割成垂直面,并将切缝一侧不合格要求的端部铲除
继续摊铺前在切割面上涂刷薄层沥青,以增加新旧铺筑层间的粘结,并用热沥青混合料将邻近接缝处的已铺沥青混合料加热
继续摊铺时保持原先的作业参数,并采用正确的骑缝碾压(既向新铺层措轮20~30cm与接缝平行碾压),可获得平整度良好的横向接缝
2.3.2纵向接缝
对于宽度较大的路面施工,可采用两台摊铺机一前一后同步摊铺,以消除摊铺机过宽造成混合料离析现象,避免铺成的沥青混合料的不均匀
搭接施工有冷接茬和热接茬两种
冷接茬施工是指新摊铺层与经过压实后的已铺层进行搭接
半幅施工不能采用热接缝时宜加设档板或采用切刀切齐
铺另半幅前必须将缝边缘清扫干净,并涂洒少量粘层沥表
摊铺时应重叠在已铺层5~10cm,摊铺后用人工将摊铺在前半幅上面的混合料铲走,然后进行碾压
应注意新摊铺带必须与前一条摊铺带动的松铺厚度要同
热接在施工一般是在使用两台以上摊铺机梯队作业时采用的
此时两条毗邻摊铺带的混合料都还处于压实前的热状态,所以纵向接茬易于处理,且连接强度较好
施工时应将已铺混合料部分留下10~20cm宽,暂不碾压,作为后摊铺部分的高程基准面,待后摊铺部分完成后,一起跨缝碾压
2.4摊铺控制转贴于中国论文下载中心http://www.studa.net 优良的机械设备可大大提高路面施工质量,而灵活熟练地操作机械设备是保证施工质量的关键
因此,严格遵守机械设备的操作规程,熟练操作,才能保证摊铺质量以达到较好的平整度
2.4.1摊铺机从启动到正常摊铺是一个渐变的过程,由于混合料阻力的影响,约3~8m才能达到正常
因此减少停顿并保持一个恒定的速度是保证摊铺平整的关键
具体施工过程中应根据拌和能力和运输能力合理选择摊铺速度; 2.4.2严格控制螺旋分离器的转数,并保证熨平板前后混合料的高度不变
通常混合料的高度应与螺旋分离器的轴心线平齐
过高或过低都将影响熨平板的受力平衡,使路面出现波浪; 2.4.3根据须达到的厚度,预先调整熨平板的工作仰角,并尽量保持恒定,避免在摊铺过程中随意调节工作仰角,影响面层的平整与均匀性; 2.4.4注意对自卸汽车卸料的管理,尽量使卸料均匀并保持连续性,自卸汽车在后退时不得撞击摊铺机,料车停在摊铺机前卸料不得使用制动而增加摊铺机的阻力; 2.4.5合理选择自动找平方式
一般底面层利用基准钢丝绳来控制,中、上面层利用浮动基准梁(平衡梁)来达到较好的平整度
总之沥青路面平整度涉及的面很广,影响因素很多,关系到路基、路面施工的全过程
我们只有在充分研究分析产生的原因后,才能抓好施工中的每一个细小环节,一条高质量公路的建设,不仅在于严格按图纸、规范、标准施工,更重要的是不断总结经验,结合实际应用于实践工作中
新乡牧野发展应收账款债权项目