本文作者:linbin123456

重庆万盛国资债权项目

linbin123456 2023-10-20 97
重庆万盛国资债权项目摘要: 重庆市市级平台公司担保政信重庆“一小时经济圈”所在地国家5A级景区黑山谷·万盛石林所在地万盛经开区管委会控股平台公司发债➕AA评级市级平台担保➕AA评级债务方➕10.5...
微信号:18321177950
添加微信好友, 获取更多信息
复制微信号
重庆市市级平台公司担保政信 重庆“一小时经济圈”所在地 国家5A级景区黑山谷·万盛石林所在地 万盛经开区管委会控股平台公司发债➕AA评级市级平台担保➕AA评级债务方➕10.5亿元应收账款➕11.3亿元土地抵押 ?【产品名称】重庆万盛国资债权项目 ?【基本要素】一年期和两年期,季度付息。 ?【预期收益】10-50-100-300万: 12个月:9.0%-9.2%-9.4%-9.6%; 24个月:9.2%-9.4%-9.6%-9.8% 【资金用途】用于重庆万xx基础设施建设项目。 【风控措施及亮点】 1、重点国企融资:重庆万盛国有资产经营管xx设以及土地整治,公司注册资本4.17亿元,截至2022年12月底,公司总资产105.88亿元,净资产76.59亿元,实力雄厚,履约能力强。 2、AA评级平台担保:重庆市万盛经济技术开发区开发投资集团有限公司,是重庆市政府批准设立的市级平台公司,委托重庆市万盛经开区管委会管理。公司注册资本20亿元,主体评级AA,债项评级AAA,主要负责城市及工业基础设施建设投资,截至2022年12月底,公司总资产595.82亿元,净资产259.31亿元,实力雄厚,担保能力强。 3、应收账款:转让方提供价值10.5亿元对重庆市万盛经开区城市开发投资集团有限公司(主体评级AA)的应收账款,覆盖融资本息,为本项目还本付息提供保障。 4、债务人:重庆市万盛经开区城市开发投资集团有限公司,是重庆万盛经开区国资中心控股平台公司,公司注册资本1.4亿元,主体评级AA,债项评级AA,主要负责城镇化建设投资,截至2022年12月底,公司总资产193.8亿元,净资产91.89亿元,实力雄厚。 5、重庆万盛旅业(集团)有限公司提供价值人民币11.3亿元的土地用于抵押担保,抵押率仅53.09%。 【区位优势】 重庆市,长江上游地区的经济、金融中心,国家“一带一路”和西部大开发重要战略节点。2022年,重庆地区生产总值2.91万亿元。万盛经济技术开发区位于重庆市南部、渝黔交界,由市委、市政府直接管理,具有“经开区+行政区”的体质特点,属于重庆“一小时经济圈”,国家5A级景区黑山谷·万盛石林所在地,2022年地区生产总值239.47亿元,财政实力强。

信托定融政信知识:

就是施工项目在施工过程中,组织安全生产的全部活动,通过对生产因素的具体控制,使生产因素不安全的行为和状态减少或消除,不引发事故,从而保证施工项目的正常运行

       1.坚持安全管理原则即坚持安全与生产同步,管生产必须抓安全,安全寓于生产之中,并对生产发挥促进与保证作用

    坚持“四全”动态管理,安全工作不是少数人和安全机构的事,而是一切与生产有关的人的共同事情,缺乏全员的参与,安全管理不会有生机,效果也不会明显

    生产组织者在安全管理中的作用固然重要,全员性参与安全管理也是十分重要的

    因此,生产活动中对安全工作必须是全员、全过程、全方位、全天候的动态管理

       2.坚持控制人的不安全行为与物的不安全状态分析事故的成因,人、物和环境因素的作用是事故的根本原因,从对人和物的管理方面,去分析事故,人的不安全行为和物的不安全状态,都是酿成事故的直接原因

       3.制定安全管理措施加强施工项目的安全管理,制定确实可行的安全管理制度和措施十分重要

    它是管理的方法和手段,对生产各因素状态的约束和控制,根据施工生产特点,安全管理也具有明显的行业特色

    要落实安全责任,实施责任管理,加强安全教育,例行安全检查

       如何做好文明施工至关重要,首先要健全管理组织机构和文明施工管理制度,做到按专业、岗位、区域等包干负责

    在施工项目中对现场各个方面专业的管理,开展文明施工竞赛活动,有布置、有检查、有考评、有奖惩,评比结果公布于众

       施工项目的管理是全方位的,要求项目经营者对施工项目的质量、安全、进度、成本、文明施工等,都要纳入正规化、标准化管理,这样才能使施工项目各项工作有条不紊、顺利地进行

    施工项目的成功管理不仅对项目、对企业有良好经济效益,对国家也会产生良好的社会效益

    成功的管理,能促进项目和企业的发展,能推动建筑市场不断前进

    开拓创新,总结经验,在项目的实践中不断摸索,最终创造出一条施工项目管理的成功之路

     特别是热负荷作用下的破损状况;根据调查检测的结果,对焦炉抵抗墙结构进行了系统的力学分析和承载力校核;结合调查检测和计算分析的结果,分析了其破损原因,并对焦炉抵抗墙的可靠性进行7综合评定,判定了焦炉抵抗墙的可靠性等级

           1 基本情况        某钢铁公司焦化厂1#、2#焦炉原系3#、4#焦炉异地扩建工程项目

    其中2#焦炉建于1984年3月,于1987年7月竣工,投产至1994年9月已生产210万吨焦碳;1#焦炉于1987年7月动工,于1988年7月投产,至1994年9月已生产174万吨焦碳

    至今目前该两座焦炉炉龄以近16~17年

    焦炉基础结构由基础顶板、基础构架柱和柱基础组成

    抵抗墙在焦炉基础纵向的两端

    抵抗墙由墙板和构架(水平梁及柱)组成,为现浇钢筋混凝土结构,墙体与构架整体浇筑

    墙体标高为10.5m

    两座焦炉投产使用后不久,即发现其耐热混凝土抵抗墙柱体产生不同程度的裂缝,并于1990年和1994年对其进行了检测加固

    经多年观察监测表明:抵抗墙破损不断恶化,裂缝宽度、数量均有明显发展和扩展

          焦炉系统的建筑物主要由焦炉基础、大小间台、筛焦楼、通廊及烟道和凉焦台构成

    其中大小间台位于焦炉基础的两侧

    大间台在两座焦炉中间,为两层二跨钢筋混凝土结构,长度为14.3m,宽度为13.6m,板顶板标高为10.21m,间台梁两端简支于抵抗墙柱上,中间简支于框架柱

    小间台在焦炉基础的两侧为两层单跨钢筋混凝土结构,长度为14.3m,宽度为3.8m,各层层高与大间台相同,间台梁一端简支于抵抗墙柱上,另一端简支于煤塔柱牛腿上或墙上

    筛焦楼为钢筋混凝土框架结构,共有四层

重庆万盛国资债权项目

    框架长16.60m,宽14.50m,顶板标高为24.2m

    总烟道、分烟道、凉焦台均为钢筋混凝土结构

    烟囱为钢筋混凝土构筑物,高度为90m

    通廊桁架为钢结构

          本次检测的为焦炉系统的抵抗墙部分,原设计抵焦炉抵抗墙采用C20耐热混凝土,现浇墙柱和横梁,预制装配墙板

    设计要求抵抗墙耐热混凝土选用“经过鉴定确保热稳定性的重矿渣为集料,以矿渣硅酸盐水泥为胶结料配制而成的混凝土,水灰比不得大于0.5

    预制墙板用料符合要求,而现浇梁柱施工时却擅自改用碎耐火砖骨料

    1#、2#焦炉运行中抵抗墙外表面温度状况如下:标高�-2.38m~�1.00m段为地下室(统称下柱),处于常温状态;标高�1.00m~�4.74m段为蓄热室区,温度分布由下至上呈从常温向120℃过渡状态(指抵抗墙表面温度,此段称中柱):标高�4.74m~�10.5m段为炉子区,该段抵抗墙表面温度分布为由下而上呈高温(120℃)向较低温(70℃~80℃)过渡状态

    为便于表达抵抗墙各柱的现状,本次鉴定中采用以下表示符号和编号,详见图1a、图1b所示

    例如1#s①上-表示1#炉南抵抗墙①号柱上端

            2 现场检测与试验结果分析        2.1 材料物质性能      采用回弹法、超声及取芯综合法对鉴定区域的混凝土强度进行测试

          对耐热混凝土柱的混凝土强度,所采用的三种实测方,所得结果中,超声法结果表明,实测时虽已避开混凝土柱表面繁多裂缝,但却难以避开贯穿内部的诸多裂缝,因此,所测数据不能正确反映混凝土强度,而可提供混凝土柱内部裂缝分布的状况;回弹法测定结果数据较为离散,但仍有其规律性,如各抵抗墙混凝土柱,均以中上段(受热区)柱的强度比下段(非受热区)有明显降低,详见表1;本工程中,钻取混凝土芯样的试验结果,仅代表混凝土柱内部及外表面均无破损部位的混凝土强度(可以认为最佳强度)

    但此值与3#炉普通混凝土相比仍然低31%,比耐热混凝土(C20,龄期三个月),低48%

          综合分析结果表明:抗拉强度试验结果比普通混凝土低33%,弹性模量低40~50%,这表明抗拉性能低,孔隙率大

               2.2 抵抗墙温度分析        2.2.1抵抗墙板的温度分布

    经红外摄像所得资料表明,墙板外表面温度沿高度方向从常温逐渐向高温过渡,至�+4.74m~�+5.74m左右,温度达最高再向上温度又渐渐下降

    各抵抗墙板温度变化规律基本相同,仅抵抗墙中部(②~④柱间)板温度略高于边端板,以及受外界气温环境影响引起的变化

            2.2.2 抵抗墙混凝土柱的温度分布:经红外摄像和预埋热敏电阻实测表明:沿柱高度受热温度,在靠近墙板侧,温度变化规律与墙板相同

    沿柱断面温度分布,沿柱截面外表面温度沿高度方向从常温逐渐向高温过渡,在沿柱高方向的中轴线上温度达最高,再向两边温度又渐渐下降

        检测中测试了热源附近构件的表面温度

    测试结果说明,构件表面温度不至于影响材质,对结构内力的影响也有限

            3 计算分析        根据现场检测、材质分析、工程图纸及有关资料,对焦炉抵抗墙进行了验算分析

    主要承重构件承载能力验算结果各项指标(最低控制指标)均给出抗力与荷载效应比值(R/(Y

    ・S)值),式中R为结构或构件的抗力,S为结构或构件的作用效应,Y

    为结构重要性系数,对安全等级为一级、二级、三级的结构构件,可分别取1.1、1.O、0.9,本厂房各类构件Y

    均取1.0

          计算简图,图中荷载参数如图3、图4,框架上作用的荷载是根据本工程有关单位提供的实际参数确定的

          验算结果表明:1)如果原设计条件,混凝土强度满足原设计要求,抵抗墙柱的承载能力,下柱R/(Y

    ・S)=1/05~4/08>1/O,上、中柱R(Y

    ・S)=1.17~2.21>1.O,柱承载能力满足要求,但部分柱段的富裕不多

    由于柱截面开裂严重,当考虑柱的破损时实际承载能力要受到一定影响,构件或杆件的承载力不满足或略低于现行国家规范的要求,鉴定评级中应考虑实际情况折减后予以判断;2)由于混凝土梁破损较少,安原截面积计算承载能力时,完全可以满足使用要求

    如果横梁表面没有较大开裂,混凝土强度满足原设计要求,抵抗墙横梁承载能R.(Y

    ・S)>1.0,承载能力满足要求,但由于部分横梁表面开裂破损严重,鉴定评级中应考虑实际情况折减后予以判断

          由于影响因素复杂,抵抗墙柱和横梁的理论计算数据结果难以准确反映抵抗墙柱和横梁的真实受力情况,这将直接影响主体框架实际应力的分析结果

               4 厂房可靠性分析        4.1 评定结论及对策      通过对焦化厂焦炉抵抗墙系统的调查检测、计算分析和鉴定评级,焦炉抵抗墙系统破损结论及对策如下:        4.1.1 原因        1)耐热混凝土集料选用不当

    材质取样的试验结果证实:所用耐火砖骨料中含膨胀系数较大的矽线石约40%,粉料中含矽线石   约30%,且骨料中含有较多低熔点的碱土金属离子,其存在能促使骨料中各晶体发育长大,高温状态尤其活跃

    由此确定施工中擅自改用的耐火砖骨料热膨胀性大,热稳定性差

    耐热混凝土内部应力不平衡产生微裂缝,在环境温度循环变化,环境温度和环境水侵蚀、酸性气体腐蚀等作用下,使得耐热混凝土原材料因矿相内应力及已有裂缝不断扩大,导致混凝土强度降低,造成结构胀裂破损

            2)温度应力作用

    验算分析证明:温度作用下抵抗墙椎截面产生的温度应力远大于其耐热混凝土抗拉强度

    柱内温度高,温度梯度大,由温度梯度造成的温度应力较大,温度应力等应力线呈斜劈状劈向高温中心,当应力超过该温度下混凝土复杂拉力的抗拉强度极限时,混凝土就会开裂,从而沿柱截面温度分布梯度方向出现裂缝

    开裂后应力释放,造成应力重分布,继而在新的应力处集中,一旦该处应力超过那里混凝土复杂应力的抗拉强度极限时,又形成新的裂缝,如此反复作用导致裂缝的继续处现和发展

            4.2 结论      通过对焦化厂1#、2#焦炉抵抗墙系统的调查检测、计算分析和鉴定评级,结论如下:抵抗墙系统可靠性的综合等级为三级,不满足国家现行规范要求,应及时采取修复、加固措施提高厂房的可靠性

            4.3 存在的主要问题        1)由于1#、2#焦炉抵抗墙的主要承重结构柱和横梁采用了热膨胀系数大,热稳定性差的耐火砖为骨料和粉料,配制的耐热混凝土,在温度循环变化和温度(水汽)(该地区常年大气湿度为75%~81%),酸性气体侵蚀等作用下,该部分结构耐热混凝土的物理性能将继续下降,裂缝将继续扩展和有新的破损现象;        2)如果继续使用,混凝土柱和横梁在生产温度继续作用下,裂缝将继续扩展,并产生新的裂缝和破损;        3)目前状态已属以上两种主要因素的作用下造成抵抗墙承重结构的严重破损,抵抗墙系统可靠性的综合等级已属三级,应尽早采取加固措施为宜;        4)各抵抗墙板因所处环境和受力状态以及制作条件等均较有利,损坏较小,可继续使用;        5)根据厂方提供的测量以前的成果报告书,抵抗墙系统的个别轴线柱曾出现倾斜现象,虽然倾斜不大,但由于影响因素复杂,特别是温度影响较大,柱位移和框架变形的测量数据难以准确反映抵抗墙系统变形和沉降的真实情况,这将直接影响主体框架附加应力的分析结果

    应特别注意是柱的变形的测量数据较异常的情况

            4.4 对策      由于以上问题严重影响了抵抗墙系统的可靠性,应及时采取修复、加固措施提高抵抗墙系统的可靠性,建议采取以下对策:        1)各抵抗墙混凝土柱的中上段必须加固;�+4.74m~�+10.50m,混凝土横梁必须加固

            2)抵抗墙混凝土柱的下段(�-2.38m~�+1.OOm区段)从受荷状态分析,宜以加固为妥

          3)对抵抗墙混凝土柱变形情况继续进行精确测量,及时查找测量数据异常的原因,必须及时采取措施阻止混凝土柱变形得继续发展,采取措施保证柱基稳定和混凝土柱的可靠性

          除了上部结构和地基基础的这些处理措施,在生产过程中也应保证抵抗墙系统的正常使用,避免事故发生,严禁在结构构件上随意设置吊点,及时清灰等等;同时还应对抵抗墙系统进行正常的维护,及时对腐蚀构件和杆件进行防腐处理,及时修复损伤的构件和杆件

               4.5 加固方案      建议的一种加固方案如下:      1#、2#焦炉抵抗墙混合结构加固方案要点:        (1)柱子

    标高�1.00m平台以下采用穿套外包细石混凝土,标高�1.00m平台以上采用外包钢、内浇灌浆料加固

            (2)横梁

    标高�1.00m处平台梁外包劲性细石混凝土,标高�4.74m处平台梁和标高�10.5m处平台梁采用外包钢、内浇灌浆料加固

            (3)预制装配墙板基本完好,继续使用不予加固

            (4)材料选用

    普通3#钢、500#灌浆料,C20细石混凝土

            5 结语        论文研究成果不仅揭示了焦炉抵抗墙目前的使用状况和基本性能,判定了焦炉抵抗墙的可靠性水平,从加固方面简要提出了相应的对策,为焦炉抵抗墙安全问题的解决提供了技术依据,对于类似灾害的研究也有一定的参考价值

    

重庆万盛国资债权项目

文章版权及转载声明

作者:linbin123456本文地址:http://chenmj.com/post/66934.html发布于 2023-10-20
文章转载或复制请以超链接形式并注明出处政信标债网

阅读
分享